Abstract

Effect of glycerol cross-linking and hard segment content on the shape memory property of polyurethane block copolymer is comprehensively investigated. Phase separation of hard and soft segment is dependent on glycerol cross-linking and hard segment content as judged from FT-IR and DSC data. Hydrogen bonding and dipole–dipole interaction between hard segments provides strong interaction between copolymer chains in addition to chemical cross-linking by glycerol. As the hard segment content increases, the copolymer shows better tensile mechanical properties and higher melting temperature of soft segment (Tm). Effect of glycerol cross-linking on mechanical properties and Tm of soft segment is low compared to hard segment effect. Although XRD peak at 2θ = 19.5° is observed, clear difference between the copolymers with various hard segment and cross-linking content is not observed. Significant increase in shape recovery rate in the case of 30 wt% hard segment copolymer is observed after glycerol cross-linking. The drastic change of the properties of polyurethane block copolymer is discussed in the point of copolymer chain interaction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call