Abstract

The initial velocity of fragment from cylindrical casing, which detonates at one end along the central of the casing, is the key issue in the field of explosion technology and its protecting. Most of the formula available can predict the initial velocity or the velocity of fragments at middle part of the cylindrical casing with greater length-dimeter ratio (L/d>2). However, when the length-diameter ratio is less than two, the initial velocity of the cylindrical casing filled with explosives will have a big difference. In the present work, a numerical simulation model acknowledged by X-ray radiography experiments was used to determine the influence of the length-diameter ratio. The formula was built on top of the Gurney formula and made use of a correctional function to account for the effect of the length-dimeter ratio. The formula was further acknowledged with the established numerical simulation model. The results indicate that the calculation formula can accurately predict the initial fragment velocity with different length-diameter ratio (L/d⩽ 2).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.