Abstract

This study aims to evaluate the 3D-printed parts of different materials in terms of the achieved mechanical properties and surface characteristics. Fourteen infill patterns were employed in the 3D printing of polylactic acid (PLA), enhanced polylactic acid (PLA+), and polyethylene terephthalate glycol (PETG) materials. The printed specimens’ mechanical properties and surface characteristics were evaluated and discussed. Ultimate tensile strengths, Young’s modulus, and strain at break % were determined as mechanical properties, while average, maximum, and total height of profiles (Ra, Rz, and Rt) were measured as surface characteristics of the produced specimens. The cubic, gyroid, and concentric patterns were found to be the best infill patterns in terms of the mechanical properties of PLA, PLA+, and PETG materials, where maximum ultimate tensile strengths were recorded for these materials: 15.6250, 20.8333, and 16.5483 MPa, respectively. From the other side, the best Ra, Rz, and Rt were achieved with cross, quarter cubic, and concentric patterns of the PLA, PETG, and PLA+ materials, where the best values were (2.832 µm, 8.19 µm, and 17.53), (4.759 µm, 24.113 µm, and 35.216), and (4.234 µm, 30.136 µm, and 31.896), respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.