Abstract

One of the references for selecting materials in designing a machine component is its mechanical property which is tensile strength. However, the current tensile strength from the materials used in 3D printing products has not been standardized due to many parameters in the design and process that affect them. The selection of correct design and process parameters may result in the proper mechanical properties and minimize the time and amount of materials used during the printing process. The parameters expected to affect the mechanical properties are density and infill pattern. This study was conducted to observe how far the effect of them on the mechanical properties of 3D printing product's tensile strength. The specimen standard of tensile strength used was ASTM D638, while the tested infill pattern was Grid, Triangles, and Tri-Hexagon patterns, with the percentage of total infill density of 20%, 40%, and 60%. PLA (Polylactic Acid) was chosen as the material used in this study. The 3D print machine operated was 3D Print MakerGear M2 with the tensile testing machine of HTE Hounsfield. The results of this study concluded that the percentage of infill density 20%, 40%, and 60% with different infill patterns had different tensile strengths. The specimen with a Tri-Hexagon infill pattern and 60% density had the biggest tensile strength value, followed by the Triangles infill pattern and the smallest one was the Grid pattern with 20% density.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.