Abstract
Background and objectives: Cerebral palsy (CP) is the most frequent childhood motor disability. Achieving ambulation or standing in children with CP has been a major goal of physical therapy. Recently, robot-assisted gait training using the Hybrid Assistive Limb® (HAL) has been effective in improving walking ability in patients with CP. However, previous studies have not examined in detail the changes in gait pattern after HAL training for patients with spastic CP, including gait symmetry. This study aimed to evaluate the immediate effect of HAL training on the walking ability and the changes in gait pattern and gait symmetry in patients with spastic CP. Materials and Methods: We recruited 19 patients with spastic CP (13 male and six female; mean age, 15.7 years). Functional ambulation was assessed using the 10-Meter Walk Test and gait analysis in the sagittal plane before and after a single 20-min HAL intervention session. Results: The walking speed and stride length significantly increased after HAL intervention compared to the pre-intervention values. Two-dimensional gait analysis showed improvement in equinus gait, increase in the flexion angle of the swing phase in the knee and hip joints, and improvement in gait symmetry. Immediate improvements in the walking ability and gait pattern were noted after HAL training in patients with spastic CP. Conclusions: The symmetry of the joint angle of the lower limb, including the trunk, accounts for the improvement in walking ability after HAL therapy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.