Abstract

BackgroundWound healing is often impaired in diabetic animals and humans. Matrix metalloproteases act as pro-inflammatory agents in physiological wound healing pathways by stimulating cytokines including the interleukins, IL6, IL1A and IL1B, and the tumor necrosis factor and transforming growth factor beta1. Botanicals are traditionally used to assist healing of different types of wounds, because they produce fewer side effects. Our specific aim here was to develop a plant-based recipe supporting effective wound healing in diabetic animals.MethodsPlant materials from Adiantum capillus-veneris, Commiphora molmol, Aloe Vera, and henna were collected for this study, and oven-dried at 60 °C. The dried leaves and resins were then crumbled into a powder and mixed in equal parts with Vaseline as a preservative. This mixture was used as an ointment on wounds induced in 60 diabetic and non-diabetic rats that were divided into 6 subgroups receiving agent or control treatments. Necrotic tissue surrounding the wound was periodically removed during wound healing. RNA was extracted from the healing region of the wound at days 7, 14 and 21 for cDNA synthesis to monitor changes in Tgfb1, Mmp3, Mmp9, Il6 and Tnf α expression using real-time PCR.ResultsThe expression of the Mmp3, the Tnf α, and the Tgfb1 genes from wound tissue were significantly different (p < 0.05) between diabetic and non-diabetic (control) rats treated with the herbal mixture after 14 and 21 days. There was no significant difference (p > 0.05) of the Mmp9 gene expression in diabetic and non-diabetic rats treated only with Vaseline after 7, 14, and 21 days. But, the expression of the Mmp9 gene decreased significantly (p < 0.05) in diabetic rats after 14 days in comparison to non-diabetic rats, when the herbal mixture was added to Vaseline.ConclusionsOur study presents an herbal treatment that alters the gene expression signature at wounds induced in the rat model for type I diabetes in a manner consistent with accelerated healing, and demonstrates that this herbal treatment might be effective to treat wounds in diabetic patients.

Highlights

  • Wound healing is often impaired in diabetic animals and humans

  • Studies have shown that pro-inflammatory cytokines in human and animal diabetic models, such as interleukins, IL6, IL1A, IL1B, and the tumor necrosis factor (TNF), become elevated immediately after wounding [14,15,16]

  • We used both visual assessment and gene expression to assess the effect of an herbal mixture on healing of wounds induced in diabetic and non-diabetic rats

Read more

Summary

Introduction

Wound healing is often impaired in diabetic animals and humans. Matrix metalloproteases act as proinflammatory agents in physiological wound healing pathways by stimulating cytokines including the interleukins, IL6, IL1A and IL1B, and the tumor necrosis factor and transforming growth factor beta. Matrix metalloproteases can stimulate cytokines and chemokines and promote proinflammatory activity for wound healing. This indicates an association between diabetes-stimulated inflammation and matrix metalloprotease expression [10,11,12]. Studies have shown that pro-inflammatory cytokines in human and animal diabetic models, such as interleukins, IL6, IL1A, IL1B, and the tumor necrosis factor (TNF), become elevated immediately after wounding [14,15,16]. TGFB1 is a multifunctional cytokine and increases formation of granulation tissue and collagen synthesis during wound repair [17, 18]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call