Abstract

Abstract The role of the Southern Ocean in global climate is examined using three simulations with a coupled model employing geometries different only at the location of Drake Passage (DP). The results of three main experiments are examined: 1) a simulation with DP closed, 2) an experiment with DP at a shallow (690 m) depth, and 3) a realistic DP experiment. The climate with DP closed is characterized by warmer Southern Hemisphere surface air temperature (SAT), little Antarctic ice, and no North Atlantic Deep Water (NADW) overturn. On opening the DP to a shallow depth of 690 m there is an increase in Antarctic sea ice and a cooling of the Southern Hemisphere but still no North Atlantic overturn. On fully opening the DP, the climate is mostly similar in the Southern Hemisphere to DP at 690 m, but the model now simulates NADW formation and a warming in the Northern Hemisphere. This suggests the North Atlantic thermohaline circulation depends not only on the existence of a DP throughflow, but also on the dep...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call