Abstract

La0.6Sr0.4Co0.8Fe0.2O3−δ (LSCF) cathodes have been deposited by conventional spray pyrolysis on Ce0.8Gd0.2O1.9 (CGO) electrolytes at different temperatures between 250 and 450 °C, obtaining electrodes with different microstructure and porosity. Highly porous and macroporous electrodes are obtained at deposition temperatures of 250 °C and 450 °C, respectively, with an average grain size of 30–50 nm. The influence of the post-annealing treatment on the microstructure and on the electrochemical properties is investigated by scanning electron microscopy and impedance spectroscopy in air and as a function of the oxygen partial pressure to identify the different contributions to the polarization. Samples annealed at 650 °C show similar values of area specific resistance 0.04–0.06 Ω cm2 at a measured temperature of 650 °C. However, after annealing the samples at 850 °C, the ASR values increase up to 0.1–0.6 Ω cm2 with the lowest value corresponding to the film deposited at 250 °C due to the large porosity and surface area of this film. The performance degradation upon annealing is attributed to decreasing reaction sites induced by grain growth and densification.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.