Abstract

The present study focuses on the effect of conical shape in the cold side of the Ranque-Hilsch vortex tube which is shown to have a considerable influence on the system performance. A vortex tube is a simple circular tube with no moving parts which is capable to divide a high pressure flow into two relatively lower pressure flows with temperatures higher and lower than the incoming flow. A three-dimensional computational fluid dynamic model is used to analyse the mechanisms of flow inside a vortex tube. The SST turbulence model is used to predict the turbulent flow behaviour inside the vortex tube. The geometry of a vortex tube with circumferential inlet slots as well as axial cold and hot outlet is considered. Performance curves temperature separation versus cold outlet mass fraction are calculated for a given inlet mass flow rate and varying outlet mass flow rates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.