Abstract
A computational fluid dynamic model is used to predict the species and temperature separation within a counter flow Ranque–Hilsch vortex tube. The large eddy simulation (LES) technique was employed for predicting the gas flow and temperature fields and the species mass fractions (nitrogen and helium) in the vortex tube. A vortex tube with a circumferential inlet stream of nitrogen–helium mixture and an axial (cold) outlet stream and a circumferential (hot) outlet stream was considered. The temporal evolutions of the axial, radial and azimuthal components of the velocity along with the temperature, pressure and mass density and species concentration fields within the vortex tube are simulated. Even though a large temperature separation was observed, only a very minimal gas separation occurred due to diffusion effects. Correlations between the fluctuating components of velocity, temperature and species mass fraction were calculated to understand the separation mechanism. The inner core flow was found to have large values of eddy heat flux and Reynold’s stresses. Simulations were carried out for varying amounts of cold outlet mass flow rates. Performance curves (temperature separation/gas separation versus cold outlet mass fraction) were obtained for a specific vortex tube with a given inlet mass flow rate.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.