Abstract

We present a systematic theoretical study on the angular distribution and linear polarization of x-ray line emissions of neon-like ions following the electron-impact excitation from the ground state to the excited levels [(2p5)1/23d3/2]J=1, [(2p5)3/23d5/2]J=1, [(2p5)3/23d3/2]J=1, and [(2p5)1/23s]J=1. The cross sections are calculated by using the flexible atomic code under configuration-interaction plus many-body perturbation theory method. The angular distribution and linear polarization are obtained based on density matrix theory. Emphasis has been placed on the effect of the configuration mixing on the angular distribution and polarization. It has been proved that the strong mixing of configuration [(2p5)3/23d3/2]J=1 with configuration [(2p5)1/23s]J=1 can result in the abrupt change of Z-dependence of angular distribution and polarization. It indicates that angular distribution and polarization can be expected to serve as a tool for investigation of configuration mixing effect.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.