Abstract

The real physiological environment of the human body is complicated, with different degrees and forms of loads applied to biomedical implants caused by the daily life of the patients, which will definitely influence the degradation behaviors of Mg-based biodegradable implants. In the present study, the degradation behaviors of modified WE43 alloys under the combination of torsional and tensile stress were systematically investigated. Slow strain rate tensile tests revealed that the simulated body fluid (SBF) solution could deteriorate the ultimate tensile stress of WE43 alloy from 210.1 MPa to 169.2 MPa. In the meantime, the fracture surface of the specimens tested in the SBF showed an intergranular corrosion morphology in the marginal region, while the central area appeared not to have been affected by the corrosive media. The bio-degradation performances under the combination of torsional and tensile stressed conditions were much more severe than those under unstressed conditions or single tensile stressed situations. The combination of 40 MPa tensile and 40 MPa torsional stress resulted in a degradation rate over 20 mm/y, which was much higher than those under 80 MPa single tensile stress (4.5 mm/y) or 80 MPa single torsional stress (13.1 mm/y). The dynamic formation and destruction mechanism of the protective corrosion products film on the modified WE43 alloy could attribute to the exacerbated degradation performance and the unique corrosion morphology. The dynamic environment and multi-directional loading could severely accelerate the degradation process of modified WE43 alloy. Therefore, the SCC susceptibility derived from a single directional test may be not suitable for practical purposes. Complex external stress was necessary to simulate the in vivo environment for the development of biodegradable Mg-based implants for clinical applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call