Abstract
The mechanism of intramolecular nucleophilic addition in αβ-unsaturated oximes, as well as the effect of the anionic center hydration with one and two water molecules on the activation barriers of intramolecular cyclization, was studied using the B2PLYP-D2/6-311+G**//B3LYP(D)/6-31+G* method with the solvation effects included within the SMD model. The activation barrier for nucleophilic addition of the anionic center of the oxime group to the carbon skeleton of 3-ethyl-N-hydroxy-5-phenylpenten-3-imine-2 is about 21 kcal/mol. During the hydration of the anionic center with one water molecule, a strong complex is formed, which increases the activation barrier by ∼ 6 kcal / mol. The addition of a second water molecule leads to an even higher activation barrier (ΔG‡ = 28 kcal/mol), but promotes the binding of the leaving hydroxide ion.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have