Abstract

High-temperature vapor phase epitaxy (HTVPE) is a physical vapor transport technology for a deposition of gallium nitride (GaN) layers. However, little is known about the influence of the deposition parameters on the microstructure of the layers. In order to fill this gap, the influence of the ammonia (NH3) flow applied during the HTVPE growth on the microstructure of the deposited GaN layers is investigated in this work. Although the HTVPE technology is intended to grow GaN layers on foreign substrates, the GaN layers under study were grown on GaN templates produced by metal organic vapor phase epitaxy in order to be able to separate the growth defects from the defects induced by the lattice misfit between the foreign substrate and the GaN layer. The microstructure of the layers is characterized by means of high-resolution x-ray diffraction (XRD), transmission electron microscopy and photoluminescence. In samples deposited at low ammonia flow, planar defects were detected, along which the nitrogen atoms are found to be substituted by impurity atoms. The interplay between these planar defects and the threading dislocations is discussed. A combination of XRD and micro-Raman spectroscopy reveals the presence of compressive residual stress in the samples.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call