Abstract

Aluminum-doped zinc oxide thin films (ZnO:Al) were deposited on sodocalcic glass substrates by the chemical spray technique, using zinc acetate and aluminum pentanedionate as precursors. The effect of the [Al/Zn] ratio in the starting solution, as well as the substrate temperature, on the physical characteristic of ZnO:Al thin films was analyzed. We have found that the addition of Al to the starting solution decreases the electrical resistivity of the films until a minimum value, located between 2 and 3 at.%; a further increase in the [Al/Zn] ratio leads to an increase in the resistivity. A similar resistivity tendency with the substrate temperature was encountered, namely, as the substrate temperature is increased, a minimum value of around 475 °C in almost all the cases, was obtained. At higher deposition temperatures the film resistivity suffers an increase. After a vacuum-thermal treatment, performed at 400 °C for 1 h, the films showed a resistivity decrease about one order of magnitude, reaching a minimum value, for the films deposited at 475 °C, of 4.3 × 10 − 3 Ω cm. The film morphology is strongly affected by the [Al/Zn] ratio in the starting solution. X-ray analysis shows a (002) preferential growth in all the films. As the substrate temperature increases it is observed a slight increase in the transmittance as well as a shift in the band gap of the ZnO:Al thin films.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call