Abstract

Seasonal freeze-thaw erosion is a form of soil erosion caused by the topographical characteristics and climatic factors of the hilly and gully loess regions. Seasonal freeze-thaw can damage the soil pores and cause its bulk density to change. The effects of thawing depth on runoff and Nitrogen and Phosphorus loss on the rainfall erosion of an artificial slope filled with loess soil were analyzed after a rainfall test that simulated the spring thaw period in China. The results showed that: (1) The maximum runoff yield was 33.35 mm at 4 cm thawing depth, and the minimum was 12.95 mm at 6 cm thawing depth. With the increase in runoff time, the slope infiltration rate had a decreasing trend. The loss rate of available and total Phosphorus increased with the increase in runoff rate. The rate of increase was fastest when the thawing depth was 4 cm. (2) The relationships between runoff rate and Nitrogen loss and Phosphorus loss rate can be explained by linear regression equations, and the loss rate increased as the runoff rate rose for all thawing depths. Within the 0–6 cm thawing depths, the loss of total phosphorus was the largest when the thawing depth was 4 cm, and the loss of available phosphorus was the smallest when the thawing depth was 6 cm. At the shallower thawing depths, the available Nitrogen loss represented a smaller proportion of the total Nitrogen loss compared to nitrate Nitrogen loss. However, there was a gradual rise in the available Nitrogen proportion in the total amount of inorganic Nitrogen as the thawing depth increased. (3) Total Phosphorus was the available Phosphorus with a quadratic function relationship with runoff energy and runoff power. Runoff energy mainly affected the total Nitrogen and available Nitrogen loss in runoff, whereas runoff power mainly affected total Nitrogen loss in runoff. The results of this paper can improve the understanding of runoff and Nitrogen and Phosphorus loss caused by runoff during freeze-thaw conditions.

Highlights

  • Rainfall has a considerable impact on runoff andinitial determines initial runoff tim runoff time rose as the thaw depth increased

  • Seasonal freeze-thaw erosion is a form of soil erosion caused by the topographical characteristics and climatic factors of the hilly and gully loess regions

  • The loss of nitrogen and phosphorus is quite different under different thawing stages on the Loess Plateau

Read more

Summary

Introduction

Soil played a major role in global N (Nitrogen) and P (Phosphorus) cycles because they are much larger reservoirs of organic N and P than terrestrial plants. The seasonal freeze-thaw process, which influences soil nitrification, organic carbon mineralization, and dissolved organic acids, affects the migration and transformation direction of Nitrogen and Phosphorus, and morphological changes by changing the physical and chemical properties and biological characteristics of soil [1,2,3]. During the spring thawing period, as the temperature rises, the surface soil begins to thaw, whereas the lower soil layer soil remains frozen and forms an impermeable layer. Rainfall and snowmelt cannot infiltrate the permafrost soil, which results in surface runoff

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call