Abstract

Implementing a suite of best management practices (BMPs) can reduce non-point source (NPS) pollutants from various land use activities. Watershed models are generally used to evaluate the effectiveness of BMP performance in improving water quality as the basis for watershed management recommendations. This study evaluates 171 management practice combinations that incorporate nutrient management, vegetated filter strips (VFS) and grazing management for their performances in improving water quality in a pasture-dominated watershed with dynamic land use changes during 1992–2007 by using the Soil and Water Assessment Tool (SWAT). These selected BMPs were further examined with future climate conditions (2010–2069) downscaled from three general circulation models (GCMs) for understanding how climate change may impact BMP performance. Simulation results indicate that total nitrogen (TN) and total phosphorus (TP) losses increase with increasing litter application rates. Alum-treated litter applications resulted in greater TN losses, and fewer TP losses than the losses from untreated poultry litter applications. For the same litter application rates, sediment and TP losses are greater for summer applications than fall and spring applications, while TN losses are greater for fall applications. Overgrazing management resulted in the greatest sediment and phosphorus losses, and VFS is the most influential management practice in reducing pollutant losses. Simulations also indicate that climate change impacts TSS losses the most, resulting in a larger magnitude of TSS losses. However, the performance of selected BMPs in reducing TN and TP losses was more stable in future climate change conditions than in the BMP performance in the historical climate condition. We recommend that selection of BMPs to reduce TSS losses should be a priority concern when multiple uses of BMPs that benefit nutrient reductions are considered in a watershed. Therefore, the BMP combination of spring litter application, optimum grazing management and filter strip with a VFS ratio of 42 could be a promising alternative for use in mitigating future climate change.

Highlights

  • Best management practices (BMPs) are often used to control the losses of non-point source (NPS)pollutants to receiving water bodies

  • The default CN values for each land use were decreased by 10%, indicating that the Lincoln Lake watershed has better soil drainage than the general conditions in the soil and water assessment tool (SWAT) database

  • Because of a high base flow, the GWQMN value was increased to 3,000 mm to increase deep percolation losses, a condition typical to karst topography in the watershed

Read more

Summary

Introduction

Best management practices (BMPs) are often used to control the losses of non-point source (NPS). Selection of BMPs is specific to topographic, soil, land use, and climate conditions. Different approaches to mitigate animal waste problems were adopted in the Rural Clean Water. Program (RCWP) projects conducted in the American states of Utah and Florida due to their different climatic characteristics [2]. Multiple BMPs are usually combined together in a watershed, such as tillage and nutrient management practices [3] or grazing management and vegetative buffers [4] to effectively control pollutants from various sources. When numerous BMP options are available, whether various combinations of BMPs work synergistically or cancel the effect of each other when implemented together in a watershed must be evaluated [5,6,7]

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.