Abstract

In this work, the technique of equal-channel angular pressing (ECAP) that enables producing bulk billets was used to form a UFG structure in Ti-6Al-4V alloy. A subsequent warm upsetting simulates die forging and the production of a part. We studied the evolution of the UFG alloy’s crystallographic texture in the process of deformation during the production of a semi-product and/or a part, as well as its effect on the ductile–brittle transition region in the temperature range from −196 °C to 500 °C and the material’s fracture mechanisms. To test Charpy impact strength, standard samples of square cross-section with a V-shape notch were used (KCV). It was found that the impact toughness anisotropy is caused by textural effects and has a pronounced character at temperatures in the ductile–brittle transition range. Up to 100 °C the KCV values are close in the specimens processed by ECAP and ECAP+upsetting (along and perpendicularly to the upsetting axis—along the Z-axis and along the Y-axis, respectively), while a large difference is observed at test temperatures of 200 °C and higher. At a temperature of 500 °C, the impact toughness of the UFG Ti-6Al-4V alloy after ECAP reaches a level of that after ECAP+upsetting in the fracture direction along the Z-axis (1.60 and 1.77 MJ/m2, respectively). Additionally, an additional ECAP upsetting after ECAP decreases the ductile–brittle transition temperature of the UFG Ti-6Al-4V alloy, which increases the temperature margin of the toughness of the structural material and reduces the risk of the catastrophic failure of a product. The fractographic analysis of the fracture surface of the specimens after Charpy tests in a wide temperature range revealed the features of crack propagation depending on the type of the alloy’s microstructure and texture in the fracture direction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call