Abstract
In this work, the effect of equal channel angular pressing (ECAP) on the microstructure and mechanical properties of zinc and zinc alloys with Ag, Cu, and Mn additions (0.5 at%) was investigated. Four passes of ECAP Route BC was performed at room temperature for each material. Properties of investigated materials after ECAP were compared to their coarse grained counterparts obtained via indirect hot extrusion at 300 °C. Highest strengthening effect was observed for alloy containing the Mn addition. Grain refinement in materials after ECAP was obtained, mean grain diameter is equal to 20 µm in the case of pure zinc, and less than 3.2 µm for alloys. Strain rate dependent plasticity increase was observed for all fine grained materials, with maximum elongation of 510% measured for Zn-Cu alloy after ECAP. Grain refinement did not result in increased yield and ultimate tensile strength of alloys after ECAP. In all investigated materials tensile properties after ECAP were 20 ~ 60% lower than in hot extruded samples. Based on the tensile properties, microstructure and texture analysis, the changes in the main deformation mechanisms were considered. It was presented that the crystallographic texture and grain size are the main factors affecting twinning, slip and non-slip deformation mechanisms resulting in large differences in observed mechanical properties.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.