Abstract

In a previous report, we investigated the influence of the shooting angle of polishing particle on the surface roughness of a cobalt-chromium (Co-Cr) alloy using a centrifugal shooting type polishing machine. In the present work, we examined the effects of the texture of polishing particle and polishing time on the surface roughness of Co-Cr alloy cast specimens. Nine different textures of polishing particle were investigated with respect to core material and particle abrasiveness: three different elastic body cores (core A, hard chloroprene rubber; core B, soft chloroprene rubber; core C, natural rubber) and three different green carborundum powders as abrasives (#800, #3000, and #6000). Polishing was performed under a fixed shooting angle of 30 degrees for six different polishing times (1, 2, 3, 5, 7, and 10 minutes). Surface roughness (Ra, Sm) and cutting depth on the polished surface were measured after each polishing stage. Surface roughness was significantly improved within three minutes, particularly using a polishing particle with rough carborundum powder (#800 or #3000) and a heavy core (core A or core B). Cutting depth increased in proportion to polishing time and roughness of carborundum powder, and was least with core C. These results suggested that a polishing particle composed of core B and #3000 carborundum paste was superior for the intermediate polishing of a Co-Cr alloy, and that polishing time should be limited to within three minutes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.