Abstract
DNA within the living cells experiences a diverse range of temperature, ranging from freezing condition to hot spring water. How the structure, the mechanical properties of DNA, and the solvation dynamics around DNA changes with the temperature is important to understand the functionality of DNA under those acute temperature conditions. In that notion, we have carried out molecular dynamics simulations of a DNA oligomer, containing TATA-box sequence for three different temperatures (250K, 300K and 350K). We observed that the structure of the DNA, in terms of backbone torsion angles, sugar pucker, base pair parameters, and base pair step parameters, did not show any unusual properties within the studied range of temperatures, but significant structural alteration was noticed between BI and BII forms at higher temperature. As expected, the flexibility of the DNA, in terms of the torsional rigidity and the bending rigidity is highly temperature dependent, confirming that flexibility increases with increase in temperature. Additionally, the groove widths of the studied DNA showed temperature sensitivity, specifically, the major groove width decreases and the minor groove width increases, respectively, with the increase in temperature. We observed that at higher temperature, water around both the major and the minor groove of the DNA is less structured. However, the water dynamics around the minor groove of the DNA is more restricted as compared to the water around the major groove throughout the studied range of temperatures, without any anomalous behavior.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.