Abstract

In x Ga 1−x As 1−y N y / GaAs single quantum wells emitting at room temperature in the wavelength range λ=(1.3–1.55) μm have been studied by photoluminescence (PL). By increasing temperature, we find that samples containing nitrogen have a luminescence thermal stability and a room temperature emission efficiency higher than that of the corresponding N-free heterostructures. The temperature dependence of the PL line shape shows a progressive carrier detrapping from localized to extended states as T is increased. Finally, the extent of the thermal shift of the free exciton energy for different y indicates that the electron band edge has a localized character which increases with nitrogen content.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call