Abstract

The effect of temperature on the dynamic parameters of silty clay in a seasonally frozen region was assessed using a GDS dynamic triaxial test system. The strength parameters, dynamic elastic modulus, damping ratio, and other dynamic parameters of the soil samples were analyzed under different temperature conditions. The results demonstrated that the shear strength parameters (internal friction angle and cohesion) of the silty clay under a dynamic load increased significantly with decreasing temperature, and the internal friction angle increased sharply below 0 °C. The dynamic elastic modulus increased as the temperature decreased and changed significantly in the ice-water phase change region. The slope of the dynamic stress–strain curve of the soil sample increased significantly with decreasing temperature. As the temperature decreased, the damping ratio reduced, and the ability of the soil to absorb seismic waves declines. The research results provide new data and information to guide construction projects in seasonally frozen region.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.