Abstract
A sequencing batch reactor (SBR) was operated in this study to investigate the effect of temperature on the kinetics of Nitrobacter activity among nitrite oxidizing bacteria. At the beginning of the experiment, the NO2--N concentration in the influent was changed to enrich Nitrobacter. Then, the sludge with enriched Nitrobacter was employed to determine the variation of the specific nitrite oxidation rate (SNiOR) during the nitrite oxidation process in batch tests. Metagenomics species annotation and abundance analysis showed that Nitrobacter accounted for 40.3% of the total bacterial population. The variation of SNiOR in the nitrite oxidation process was investigated under different NO2--N concentrations. The effect of temperature on the kinetics of Nitrobacter was investigated using the Monod model. Furthermore, the kinetics model of the effect of temperature on Nitrobacter activity was fitted for statistical analysis. The results showed that SNiOR reached its maximum at 30℃, which was 1.31 g·(g·d)-1. Statistical analysis showed that the Monod equation could describe the effect of substrate concentration on Nitrobacter activity under different temperature conditions. Calculating the temperature coefficient (θ) in different temperature intervals based on the Phelps equation, showed that when the system temperature is lower than 25℃ or higher than 30℃, the reaction rate is more sensitive to temperature changes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.