Abstract
The antiferromagnetic Heisenberg model on the two-leg ladder with exchange interactions along the chains, rungs, and diagonals is studied using the Jordan-Wigner transformation and bond-mean-field theory. The inclusion of all three couplings introduces frustration to the system and depending on their relative strengths the ladder can adopt one of three possible magnetically disordered gapped states. The phase diagram found in this mean-field approach is in very good agreement with the one calculated by Weihong et al. [Phys. Rev. B 57, 11439 (1998)] using the Lanczos exact diagonalization method. By analyzing the ground-state energy, we study quantum criticality when the coupling parameters are varied at zero temperature. We study the effect of temperature on the phase boundaries and find that the system shows thermally induced criticality for some values of the rung and diagonal coupling constants. All the phase transitions encountered in this system occur between disordered phases and are all caused by frustration.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have