Abstract
The effect of temperature on the oxidation resistance of a novel wear-resistant Fe-10Cr-1.5B-6Al-0.3C-0.8Mn-0.6Si alloy is investigated. The mass growth rate shows that this alloy exhibits superior oxidation resistance at 900 °C. As the oxidation temperature increases from 900 °C to 1100 °C, the structure of the observed oxide scales transforms from a porous bilayer to a flat monolayer, while the oxidation rate increases sharply. The selective oxidation of Al suppresses the outward diffusion of Cr and Mn to form MnCr2O4 oxides in the monolayer oxide scale, thereby decreasing the oxidation resistance at 1100 °C.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.