Abstract
The aim of the present study was to investigate the role of deformation temperature on the active deformation mechanisms in a 0.6C-18Mn-1.5Al (wt%) TWIP steel. The tensile testing was performed at different temperatures, ranging from ambient to 400°C at a constant strain rate of 10-3 s-1. The microstructure characterization was carried out using a scanning electron microscopy. The deformation temperature revealed a significant effect on the active deformation mechanisms (i.e. slip versus twinning), resulting in different microstructure evolution and mechanical properties. At the room temperature, the mechanical twinning was the dominant deformation mechanism, enhancing both the strength and ductility. Dynamic strain aging (DSA) effect was observed at different deformation temperatures, though it was more pronounced at higher temperatures. The volume fraction of deformation twins significantly reduced with an increase in the deformation temperature, deteriorating the mechanical behavior. There was a transition temperature (~300°C), above which the mechanical twinning was hardly observed in the microstructure even at fracture, resulting in low ductility and strength. The current observation can be explained through the change in the stacking fault energy with the deformation temperature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.