Abstract

This paper presents the outcome of research into the effects of ambient temperature changes on structured-light three-dimensional (3D) scanners. The tests were conducted in a thermal chamber and consisted of a comparison of the 3D measurement of a special reference unit (made of a carbon composite) performed at different temperatures, with measurements performed at the calibration temperature. A contact measuring arm with temperature compensation was used as a reference. Based on the results of these experiments, we propose a method that allows us to extend the existing scanner calibration method by using a temperature-correction procedure that is based on linear and nonlinear mathematical models. An exemplary application of this procedure has shown that the range of temperatures in which scanner accuracy is within declared limits can be increased 11-fold.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call