Abstract
ABSTRACT The increase in carbon dioxide (CO2) atmospheric levels contributes to the rise in temperature and ocean acidification; consequently, it directly impacts coral reefs. The increase in seawater temperature is the primary factor that causes the collapse of coral-algal symbiosis, which can be followed by coral death and, generally, ocean acidification impairs biogenic calcification and promotes dissolution of carbonate substrata. These harmful effects on corals associated with the continuous increase in CO2 atmospheric levels raise widespread concerns about the coral reef decline, intensifying the efforts to understand/monitor their effects on these organisms. The objective of this study was to evaluate the physiological effect of temperature increase, water acidification (i.e. decrease in pH), and their effects combined (temperature increase with water acidification), through the reflectance analyses and maximum photosynthetic capacity of zooxanthellae (Fv/Fm) in two coral species: Millepora alcicornis and Mussismilia harttii. Fragments of four large colonies of each specie were collected, fragmented, and submitted to four different treatments for 15 days: (i) control treatment (under identical temperature and pH conditions observed in the sampling seawater site), (ii) temperature treatment (with an increase temperature of around ≅2ºC); (iii) water acidification treatment (with a decrease of nearly 0.3 in pH); and (iv) a treatment of combined effects from water temperature rising and acidification. Spectral reflectance and Fv/Fm were measured from samples of these species in a marine mesocosm. Data of reflectance, first and second-order derivative, area under the curve, full width at half maximum (FWHM), depth values and the Fv/Fm were used to classify the coral species and treatments through the linear discriminant analysis (LDA). Coral samples were exposed to the increased temperature bleached, whilst decreased pH caused a slight reduction in reflectance albedo with minimal effects on Fv/Fm. The combined factors (treatment iv) triggered a bleaching response, presenting spectral reflectance and colouring patterns similar to those observed in bleached corals, especially for M. alcicornis. The two-way ANOVA indicated statistically meaningful spectral differences between treatments for the second-order derivatives at 634 nm and for Fv/Fm values. However, there was no statistically meaningful interaction effect due to the treatment type and coral species response for the second-order derivative at 670 nm and to the Fv/Fm values. LDA classified the corals’ species and the corals in different treatment, using their spectral responses and Fv/Fm results, with high accuracy (96.7% and 73.3%, respectively), reinforcing its application for coral physiology evaluation and species classification. The control and combined groups achieved the best classification scores, with only one misclassification.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have