Abstract

To investigate the effects of tellurium (Te) deposition rate on the properties of Cu–In–Te based thin films (Cu/In=0.30–0.31), the films were grown on both bare and Mo-coated soda-lime glass substrates at 200 °C by co-evaporation using a molecular beam epitaxy system. The microstructural properties were examined by means of scanning electron microscopy and X-ray diffraction. The crystalline quality of the films was improved with increase in the deposition rate of Te, and exhibited a single CuIn 3Te 5 phase with a highly preferred (1 1 2) orientation. Te-deficient film (Te/(Cu+In)=1.07) grown with a low Te deposition rate showed a narrow bandgap of 0.99 eV at room temperature. The solar cell performance was affected by the deposition rate of Te. The best solar cell fabricated using CuIn 3Te 5 thin films grown with the highest deposition rate of Te (2.6 nm/s) yielded a total area (0.50 cm 2) efficiency of 4.4% ( V oc=309 mV, J sc=28.0 mA/cm 2, and FF=0.509) without light soaking.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.