Abstract

Effect of tea polyphenols (TP) on the quality of Chinese steamed bun (CSB) was investigated, while the interaction and action mechanism between TP and vital wheat gluten (VWG, constitutive proteins of flour) were further explored. With a low concentration (1%) of TP, CSB showed positive changes in quality, and the hardness of CSB decreased by 33.95%, while its specific volume, springiness, and resilience separately increased by 1.8%, 11.9%, and 5.5%, whereas the higher concentrations of TP (2% and 4%) caused an adverse impact. By observation of scanning electron microscope, VWG formed a fluffier structure with a low concentration of TP, while the structure deteriorated at high concentration of TP. In addition, the secondary and tertiary structures of VWG were both changed by TP. Along with the results of thermodynamic analysis (thermogravimetric and differential scanning calorimetry measurements), TP could induce the structural rearrangement of VWG. Further, a lower amidogen and sulfhydryl contents of VWG were obtained in TP groups, which illustrated that peptide and disulfide bonds of VWG were not possibly interrupted by TP. Instead, hydrophobic residues of VWG were bonded to form a more hydrophilic structure. Moreover, according to molecular docking results, epigallocatechin-3-gallate interacted tightly with VWG by hydrogen bonds and hydrophobic actions, and the action sites were mainly at hydrophobic and hydrophilic residues. All results suggested that the VWG structure was affected greatly by TP, and a low dose of TP might be potential to improve the quality of flour products. PRACTICAL APPLICATION: The physicochemical properties of gluten show the significant effects on the quality of flour products in food industry. In the present study, a low dose of tea polyphenols exhibited a strengthened effect on gluten, so as to ameliorate the texture of Chinese steamed bun (CSB) due to their tight interactions with gluten, while the color of CSB was changed to brown as tea polyphenols. All results suggested that a low dose of tea polyphenols could be potentially utilized to improve flour quality and enhance gluten strength in food industry.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.