Abstract

The CaCu3Ti4O12 (CCTO) ceramic was prepared through conventional solid-state method. The effects of synthesis process (synthesis temperature and synthesis time) of powder on ceramic microstructures, CuO segregation and electrical properties were investigated. The phase composition was determined by X-ray diffraction and the microstructure was examined by SEM. The dielectric constant, dielectric loss, and resistance of the ceramic were also determined by a precision impedance tester. The results show that, as the synthesis temperature increases, the CCTO ceramic grain size decreases and the stoichiometric ratio of Cu/Ca at the grain boundary increases, the dielectric constant increases and the dielectric loss decreases (40 < f < 10 kHz). In addition, when the synthesis time is shorter than 12 h, the Cu/Ca ratio of CCTO decreases and the dielectric constant increases with time increase. However, when the synthesis time exceeds 12 h, this trend is just the opposite. It is further proved that Cu at the grain boundary is not conducive to the dielectric constant of CCTO.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.