Abstract
Using computer-aided design and manufacturing (CAD-CAM) technology in restorative dentistry increased the application of lithium disilicate (LD) materials. The bond strength to core and repairing materials is crucial in the restoration's longevity. This systematic review evaluates the shear bond strength (SBS) of CAD-CAM-LD restorative materials to other materials using different surface treatments. An electronic literature search was performed through PubMed/Medline, Embase, Web of Science, Scopus, and Google Scholar. Studies were selected based on specific criteria. The risk of bias was assessed using the Joanna Briggs Institute Critical Appraisal Checklist for Quasi-Experimental Studies. Eleven studies were included, primarily investigating composite resin as the repair material. SBS values ranged from 0.82 to 32.96MPa, with the highest values observed for IPS e.max-CAD subjected to silicon carbide polishing, hydrofluoric acid (HF) etching, and silane application. For core materials, the highest SBS was reported for HFtreated IPS e.max-CAD bonded to tribochemically coated titanium and air-abraded zirconia, with SBS values ranging from 5.88 to 34MPa. This review indicates that HF etching combined with silane application is the most effective method for improving bond strength in CAD/CAM-LD restorations. Applying surface treatments to both the core material and CAD/CAM-LD can further enhance bond strength.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: The European journal of prosthodontics and restorative dentistry
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.