Abstract

Quantum efficiency decay of reflection-mode GaN photocathode is small at short wavelengths and large at long wavelengths. In light of this experimental phenomenon, the emitted electron energy distribution is calculated by using the Boltzmann distribution and transfer matrix method based on Airy function, with the intervalley scattering considered. The effect of surface potential barrier change on quantum efficiency decay is investigated. The results of theoretical calculation are in good agreement with the experiments al results. The reduction of effective dipole in activated layer leads to inereased length and height of surface barrier, which causes more decay of the emitted electron energy distribution generated by longer wavelength photons, and less decay of the emitted electron energy distribution generated by shorter wavelength photons. It is the fundamental reason of phenomenon that the decay of quantum efficiency is small at short wavelengths and large at long wavelengths.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.