Abstract
Hydriding combustion synthesis (HCS) has been regarded as an innovative process for the preparation of high active magnesium-based hydrogen storage alloys. For the purpose of understanding the interrelation of the unique hydrogen storage properties and the surface characteristics of the HCS product, the samples of Mg2Ni alloy/hydride with and without exposure to air were prepared from the HCS product of Mg2NiH4. The hydriding and dehydriding properties were compared and the surface compositions were analyzed by means of X-ray photoelectron spectroscopy (XPS) and auger electron spectroscopy (AES). It was shown that the air exposure considerably decreases the hydriding activity of Mg2Ni. Absorbing of 3.0 wt.% of hydrogen under the conditions of 603 K and 3.0 MPa after the air exposure takes 1500 s, which is six times longer than for the unexposed alloy. The hydrogen desorption of the hydride are also impeded by the air-exposure, which results in the increase of dehydriding temperature from 450 K to 540 K. XPS and AES analyses indicated that Mg segregates and exists in the form of hydroxide on the surface of the air-exposed sample, which is responsible for the degradation of the hydriding and dehydriding properties. It was confirmed that the fresh surfaces generated during the dehydriding process of the as-synthesized hydride product contributes to the high activity of the HCS product in the first cycle of the hydriding determination.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.