Abstract
Unmodified magnetic nanoparticles (MNPs) lack antibacterial potential. We investigated MNPs surface modifications that can impart antibacterial activity. Six MNPs species were prepared and characterized. Their antibacterial and antibiofilm potentials, surface affinity, and cytotoxicity were evaluated. Prepared MNPs were functionalized with citric acid, amine group, amino-propyl trimethoxy silane (APTMS), arginine, or oleic acid (OA) to give hydrophilic and hydrophobic MNPs with surface charge ranging from −30 to +30 mV. Prepared MNPs were spherical in shape with an average size of 6–15 nm. Hydrophobic (OA-MNPs) and positively charged MNPs (APTMS-MNPs) had significant concentration dependent antibacterial effect. OA-MNPs showed higher inhibitory potential againstS. aureusandE. coli(80%) than APTMS-MNPs (70%). Both particles exhibited surface affinity toS. aureusandE. coli.Different concentrations of OA-MNPs decreasedS. aureusandE. colibiofilm formation by 50–90%, while APTMS-MNPs reduced it by 30–90%, respectively. Up to 90% of preformed biofilms ofS. aureusandE. coliwere destroyed by OA-MNPs and APTMS-MNPs. In conclusion, surface positivity and hydrophobicity enhance antibacterial and antibiofilm properties of MNPs.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.