Abstract

Carrier lifetimes in 6H-SiC epilayers were investigated by using numerical simulations and micro-wave photoconductivity decay measurements. The measured carrier lifetimes were significantly increasing with an increased thickness up to 200 μm while it stays almost constant in layers thicker than 200 μm. From a comparison of the simulation and experimental results, we found that if the bulk lifetime in 6H-SiC is around a few microseconds, both the surface recombination and interface recombination influence the carrier lifetime in layers with thickness less than 200 μm while only the surface recombination determines the carrier lifetime in layers with thickness more than 200 μm. In samples with varying thicknesses, a bulk lifetime = 2.93 μs and carrier diffusion coefficient D= 2.87 cm2/s were derived from the linear fitting of reciprocal lifetime vs reciprocal square thickness.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call