Abstract
An investigation was carried out to determine the performance of a thermal barrier coating system consisting of (ZrO2-8% Y2O3)/(Pt) on two single-crystal Ni-base superalloys. Coating/alloy behavior was studied with reference to: (i) initial microstructural features, (ii) oxidation properties, (iii) thermal stability characteristics, and (iv) failure mechanism. All thermal exposure tests were carried out at 1150°C in still air with a 24-h cycling period to room temperature. Failure of the coating system was indicated by macroscopic spallation of the ceramic top coat. Scanning electron microscopy combined with energy dispersive X-ray spectroscopy as well as X-ray diffraction were used to characterize the microstructure. Decohesion between the thermally grown oxide and bond coat was found to be the mode of failure of the coating system for both alloys. This was correlated with the formation of Ti-rich and/or Ti+Ta-rich oxide particles near the oxide-bond coat interface degrading the adherence of the thermally grown oxide. However, the thickening rate of the oxide had very little or no effect on the relative coating performance. It was concluded that the coating performance is critically dependent on alloy substrate composition particularly the concentration of elements, which could have adverse effects on oxidation resistance such as Ti.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.