Abstract

Adhesion of thermally grown oxide (TGO) to the bond coat is known to limit the useful life of thermal barrier coatings used in gas turbine blade applications. This is determined by the structure and composition of the bond coat as well as its thermal stability and in turn, its ability to develop and maintain a protective oxide. In this study, the degradation modes of platinum aluminides of the β-(Ni,Pt)Al- and PtAl2 + β-(Ni,Pt)Al-types used as bond coats in thermal barrier coatings deposited on Ni-base superalloy and utilizing zirconia-7 wt% yttria and as top coat have been examined. Thermal exposure tests have been carried out at 1150 °C with cycling to room temperature every 24 h. Various electron-optical techniques have been used to characterize the microstructures of the bond coats and TGO. Particular emphasis has been placed upon the susceptibility of the bond coat to degradation by interdiffusion, oxidation, rumpling and formation of internal cavities. It is shown that the oxidation behavior and thermal stability characteristics are functions of the exact distribution of Pt in the bond coats. The β-(Ni,Pt)Al-type bond coat is found to have higher thermal stability and oxidize at a slower rate in comparison with the PtAl2 + β-(Ni,Pt)Al2-type. However, both bond coats are observed to exhibit a similar behavior in that the Al-rich and Pt-modified β-phase is progressively transformed into the Al-depleted γ′- and γ-phases with continued thermal exposure but at a slower rate in the β-(Ni,Pt)Al bond coat. Under the test conditions used in the study, there has been no evidence for rumpling, however, internal cavities are observed near the surface of each bond coat during the later stages of thermal exposure showing that rumpling is not necessarily a prerequisite. Failure of the respective thermal barrier coating systems is found to occur by loss of adhesion between the TGO and bond coat whose composition has approached that of the superalloy substrate by interdiffusion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.