Abstract
This study using the rumen simulation technique (RUSITEC) investigated the changes in the ruminal microbiota and anaerobic fermentation in response to the addition of different lipid supplements to a ruminant diet. A basal diet with no oil added was the control, and the treatment diets were supplemented with sunflower oil (2%) only, or sunflower oil (2%) in combination with fish oil (1%) or algae oil (1%). Four fermentation units were used per treatment. RUSITEC fermenters were inoculated with rumen digesta. Substrate degradation, fermentation end-products (volatile fatty acids, lactate, gas, methane, and ammonia), and microbial protein synthesis were determined. Fatty acid profiles and microbial community composition were evaluated in digesta samples. Numbers of representative bacterial species and microbial groups were determined using qPCR. Microbial composition and diversity were based on T-RFLP spectra. The addition of oils had no effect on substrate degradation or microbial protein synthesis. Differences among diets in neutral detergent fiber degradation were not significant (P = 0.132), but the contrast comparing oil–supplemented diets with the control was significant (P = 0.039). Methane production was reduced (P < 0.05) with all oil supplements. Propionate production was increased when diets containing oil were fermented. Compared with the control, the addition of algae oil decreased the percentage C18:3 c9c12c15 in rumen digesta, and that of C18:2 c9t11 was increased when the control diet was supplemented with any oil. Marine oils decreased the hydrogenation of C18 unsaturated fatty acids. Microbial diversity was not affected by oil supplementation. Cluster analysis showed that diets with additional fish or algae oils formed a group separated from the sunflower oil diet. Supplementation with marine oils decreased the numbers of Butyrivibrio producers of stearic acid, and affected the numbers of protozoa, methanogens, Selenomonas ruminantium and Streptococcus bovis, but not total bacteria. In conclusion, there is a potential to manipulate the rumen fermentation and microbiota with the addition of sunflower, fish or algae oils to ruminant diets at appropriate concentrations. Specifically, supplementation of ruminant mixed rations with marine oils will reduce methane production, the acetate to propionate ratio and the fatty acid hydrogenation in the rumen.
Highlights
Fats are added to the diets of ruminant livestock to increase energy density of the ration
There were no significant differences among the four diets in neutral detergent fiber (NDF) digestibility (P = 0.132), but the contrasting comparison of the CTR diet with average of all treatments supplemented with an oil (SFL, fish oil (FSH), and algae oil (ALG) diets) reached the level of statistical significance (P = 0.039)
This study measured the changes in rumen fermentation and microbial community composition, in particular in prominent microbial groups associated with key aspects of ruminant livestock production, in response to the supplementation of the diet with different combinations of sunflower and fish oil as well as a marine algae based product
Summary
Fats are added to the diets of ruminant livestock to increase energy density of the ration. Dietary oil supplements can be used to manipulate the microbial community and fermentation processes in the rumen (Huws et al, 2010). Specific microbial groups and their interactions play a key role in several aspects of livestock production including environmental impact (Steinfeld et al, 2006), meat and milk quality (Shingfield et al, 2013), efficiency of feed utilization (Myer et al, 2015), health and welfare (Nagaraja and Titgemeyer, 2007). Fats and oils impair ruminal CH4 production, and their inclusion in ruminant diets is considered by international agencies as one of the most feasible nutritional greenhouse gas (GHG) mitigation strategies (Bodas et al, 2012; Hristov et al, 2013). One of the global impacts on the environment from livestock agriculture is the release into the atmosphere of methane (CH4). Beside the effects on methane emissions or methanogenic microbes, there is a need to demonstrate substrate degradability is not impaired (Hristov et al, 2013)
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have