Abstract
Abstract One of the principalcauses of present concern is the current unavailability of alternative sources of fuels for transporation. Other fuel imensive sectors, such as electric power generation, can depend on coal or nuclear fuel to provide the energy if petroleum-based fuels become scare. The transporation sector, on the other hand, is projected to need liquid fuels. Due to the relevant abundance of coal in the United States, it isimperative to find ways of converting coal to liquid fuels. Products from coal liquefaction processes contain a high aromatic content. Though this is a desirable comporent isgasoline, it is a very undersirable one in jet and diesel fuels (Table 1). In even higher boiling materials such as gas oils, the high aromatic content makes it quite difficult to produce gasoline by normal rednery processess. Fischer-Tropsch (FT)synthesis, in which carbon produces mainly straight chain aliphatic hydrogen obtained from coal gastfication are reacted over a caralyst, is the only develped coal-derived process which produces mainly straight chain aliphatic hydrocarbons. Although such aliphatic hydrocarbons are not very desirable on motor gasolines due to their low octare number, diesel and jet fuels containing such aliphatic, hydrocarbons are considered high quality materials. In addition, the higher boiling gas oil traction from the FT process is easily converted to gasoline and diesel fuel by conventional refining technology
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.