Abstract

In this study, we examined whether the increased availability of lipids in blood resulting from two types of diet manipulation regulated metabolic gene expression in the skeletal muscle of rats. Feeding for 4 wk on an isocaloric-sucrose or a hypercaloric-fat diet increased plasma TAG in the fed condition by increments of 70 and 40%, respectively, and increased fasting insulinemia (approximately 3-fold) compared with a starch diet. The fat diet impaired glucose tolerance and caused obesity, whereas sucrose-fed rats maintained their normal weight. We analyzed the expression of genes that regulate the exogenous FA supply (LPL, FAT/CD36, FATP1), synthesis (ACC1), glucose (GLUT4, GLUT1, HK2, GFAT1, glycogen phosphorylase) or glycerol (glycerol kinase) provision, or substrate choice for oxidation (PDK4) in gastrocnemius and soleus muscles at the end of the glucose tolerance test. LPL, FAT/CD36, FATP1, PDK4, and GLUT4 mRNA as well as glycogen phosphorylase and glycerol kinase activity levels in both muscles were unchanged by the diets. Increased mRNA levels of GLUT1 (1.6- and 2.6-fold, respectively) and GFAT1 (about 1.7-fold) in gastrocnemius, and of ACC1 (about 1.5-fold) in soleus, were found in both the sucrose and fat groups. In the fat group, HK2 mRNA was also higher (1.8-fold) in the gastrocnemius. Both sucrose and saturated-fat diets prompted hyperinsulinemia and hyperlipemia in rats. These metabolic disturbances did not alter the expression of LPL, FAT/CD36, FATP1, PDK4, and GLUT4 genes or glycogen phosphorylase and glycerol kinase activity levels in either analyzed muscle. Instead, they were linked to the coordinated upregulation in gastrocnemius of genes that govern glucose uptake and the hexosamine pathway, namely, GLUT1 and GFAT1, which might contribute to insulin resistance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call