Abstract

Si nanowires have been synthesized by hot-wire chemical vapor deposition technique, with Indium nanocones employed as catalysts with different substrate to filament distances ranging from 6 to 3cm. Reducing the substrate to filament distance resulted in the retention of more atomic H radicals on the growth sites. The atomic H radicals acted to induce the catalytic growth and enhance the crystallinity of the Si nanowires. The Si nanowires showed tapering structures due to the radial growth of columnar Si nanocrystallites on the middle and base walls of the nanowires. The oxide-related defects on the outer layer of the Indium nanocones and Si nanowires, as well as the Si nanocrystallites on walls of the Si nanowires, contributed to the visible orange and red photoluminescence.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.