Abstract
The effect of modulating the structure of thin pentacene $({\text{C}}_{22}{\text{H}}_{14})$ films by a nanopatterned inert substrate, known as hexagonal boron nitride nanomesh, is reported. Films of different thickness are grown and characterized by x-ray absorption, core-level photoemission, low-energy electron microscopy, microbeam low-energy electron diffraction, and scanning tunneling microscopy. Initially the pentacene molecules adsorb with the molecular plane lying flat on the substrate but they tend to flip up with increasing coverage, forming well-ordered monolayer-thick islands of upright molecules with low nucleation density. The herringbone packing of the upright molecules is observed with scanning tunneling microscopy. The electronic structure of the adsorbed molecules is very similar to that of the gas-phase pentacene, implying weak interaction with the substrate and between the molecules. The periodic corrugation of the substrate surface causes the monolayer of upright pentacene molecules to form two different coincidence superstructures. The lattice parameters of the pentacene unit cell for each of these two substrate-induced domains are determined from the microdiffraction patterns. Both domains can occur in several equivalent configurations, thus resulting in a number of twins with a typical size of a few micrometers. The first monolayer grows in a layer-by-layer mode until it is completed while the second monolayer forms diffusion-limited fractal islands. Upon annealing, the pentacene films are thermally stable up to approximately $80\text{ }\ifmmode^\circ\else\textdegree\fi{}\text{C}$ and thereafter the onset of desorption is observed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.