Abstract

AbstractThe present work analyses the effect of substrate deformation during the nanowire/nanotube bending test. An individual nanowire or nanotube is treated as a linear isotropic continuum. The substrate deformation is modeled by two coupled springs and the spring compliances arefunctions of the nanowire/nanotube diameter, and the Young moduli of the nanowire/nanotube and the substrates. An atomic potential is used to determine the adhesion between the nanowire/nanotube and its substrate. Consequently, a simple three dimensional Finite Element (FE) model is built to calculate the spring compliances. The load-displacement relation, which takes into account of substrate deformation, is derived in a closed form, which can be reduced to the load-displacement relations based on the simply-supported ends and the built-in ends. The numerical results indicate that the substrate deformation has a great influence on the determination of the Young modulus of a nanowire/nanotube from the bending test. The nanobridge test on carbon nanotubes is taken as an example to demonstrate the feasibility of the developed method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call