Abstract

Based on the von Kármán plate theory, the mechanics of a shaft-loaded blister test for thin film/substrate systems is studied by considering elastic substrate deformations and residual stresses in these films. In testing, films are attached to a substrate provided with a circular hole, through which loading is applied to the film by a flat-ended shaft of circular cross-section. The effect of substrate deformation on the deflection of the loaded film is taken into account by using a line spring model. For small deflections, an analytical solution is derived, while for large deflections a numerical solution is obtained using the shooting method. The resulting load-shaft displacement relation, which is essential in blister tests, compares favorably with finite element analysis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call