Abstract

The coordination chemistry of pyrazole and three of its methyl derivatives with the chloride and nitrate salts of copper(II) under strictly controlled reaction conditions is systematically explored to gain a better understanding of the effect of counterion coordination strength and ligand identity on the structure and electronic absorption spectra of their resulting complexes. Despite the initial 2 : 1 ligand to metal ratio in water, copper(II) nitrate forms exclusively 4 : 1 ligand to metal complexes while copper(II) chloride forms a 4 : 1 ligand to metal complex only with pyrazole, with the methyl derivatives forming 2 : 1 ligand to metal complexes, as determined by single-crystal X-ray diffraction (XRD). This is attributed to a combination of ligand sterics and stronger coordination of chloride relative to nitrate. Electronic absorption spectroscopy in both water and methanol reveals a surprisingly strong effect of the pyrazole methyl position on the CuII d–d transition, with 4-methylpyrazole producing a higher energy d–d transition relative to the other ligands studied. In addition, the number of methyl groups plays a determining role in the energy of the pz π→CuII dxy LMCT band, lowering the transition energy as more methyl groups are added.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call