Abstract

Purpose The purpose of this paper is to study the effect of various stoichiometric ratios for synthesised epoxy phenolic novolac (EPN) resins on their physicochemical, thermomechanical and morphological properties. Design/methodology/approach In the present study, EPN (EPN-1, EPN-2, EPN-3, EPN-4 and EPN-5) resins were synthesised by varying five types of different stoichiometric ratios for phenol/formaldehyde along with the corresponding molar ratios for novolac/epichlorohydrin. Their different physicochemical properties of interest, thermomechanical properties as well as morphological properties were studied by means of cured samples with the variation of its stoichiometric ratios. Findings The average functionality and reactivity of EPN resin can be controlled by controlling epoxy equivalence as well as cross-linking density upon its curing as all of these factors are internally correlated with each other. Research limitations/implications Epoxy resins are characterised by a three-membered ring known as the epoxy or oxirane group. The capability of the epoxy ring to react with a variety of substrates imparts versatility to the resin. However, these resins have a major drawback of low toughness, and they are also very brittle, which limits their application in products that require high impact and fracture strength. Practical implications Epoxy resins have been widely used as high-performance adhesives and matrix resins for composites because of their outstanding mechanical and thermal properties. Because of their highly cross-linked structure, the epoxy resin disables segmental movement, making them hard, and it is also notch sensitive, having very low fracture energy. Social implications Epoxy resin is widely used in industry as protective coatings and for structural applications, such as laminates and composites, tooling, moulding, casting, bonding and adhesives. Originality/value Systematic study has been done for the first time, as no exact quantitative stoichiometric data for the synthesis of EPN resin were available on the changes of its different properties. Thus, an optimised stoichiometric composition for the synthesis of the EPN resin was found.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call