Abstract
Experiments are performed under batch-liquid operating conditions to investigate the effect of static liquid height on the gas-liquid mass transfer coefficient (KLa) in a draft-tube bubble column (DTBC) and a draft-tube three-phase fluidized bed (DTFB). In addition, the effects of column diameter, gas-distributor, and draft-tube diameter are studied. The results indicate that for a given system with a porous plate gas-distributor at low superficial gas velocities (<70 m/hr), increasing static liquid height decreases KLa. At high gas velocities, KLa is independent of the static liquid height. For systems with a perforated gas-distributor, there is no effect of static liquid height on KLa. The formation of small dispersed bubbles at low gas velocities in the porous plate distributor system accounts for the considerably high KLa values and the observed effect of liquid height. On the other hand, the formation of large spherical-cap bubbles and the bubble coalescence at high gas velocities reduce the performa...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.