Abstract

In this study, the effect of stabilization temperature on the performance of tubular carbon membrane was being investigated. P84 co-polyimide-based tubular carbon membrane will be fabricated through the dip-coating technique. The tubular carbon membrane performance can be controlled by manipulating the pyrolysis conditions which was conducted at different stabilization temperatures of 250, 300, 350, 400, and 450°C under N2 environment (200 ml/min). The prepared membranes were characterized by using scanning electron microscopy (SEM), x-ray diffraction (XRD), and pure gas permeation system. The pure gas of H2, He, and N2 were used to determine the permeation properties of the carbon membrane. The P84 co-polyimide-based tubular carbon membrane stabilized at 300°C demonstrated an excellent permeation property with H2, He, and N2 gas permeance of 1134.51±2.87, 1287.22±2.86 and 2.98±1.28GPU, respectively. The highest H2/N2 and He/N2 selectivity of 380.71±2.34 and 431.95±2.61 was obtained when the stabilization temperature of 450°C was applied. It is concluded that the stabilization temperatures have protrusive effect on the carbon membrane properties specifically their pore structure, and eventually their gas separation properties.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call